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FOREWORD 

This repor t  w a s  prepared  by North American Aviation, Inc. ,  Space 
Division, under NASA Contract  NAS9-4552, f o r  the National Aeronautics and 
Space Administration, Manned Space Flight Center ,  Houston, Texas,  with 
Dr.  F. C.  Hung, P r o g r a m  Manager and Mr .  P. P. Radkowski, Assis tant  
P r o g r a m  Manager. 
Structural  Mechanics Division, MSC, Houston, Texas with Dr.  F. Stebbins 
a s  the technical monitor. 

This work was administered under the direct ion of 

This repor t  is presented in  eleven volumes for  convenience in  handling 
and distribution. A l l  volumes a r e  unclassified. 

The objective of the study was to develop methods and F o r t r a n  IV 
computer programs to determine by the techniques descr ibed below, the 
hydro-elastic response of representation of the s t ruc ture  of the Apollo Com- 
mand Module immediately following impact on the water .  The development 
of theory,  methods and computer programs i s  presented a s  Task  I Hydro- 
dynamic P r e s s u r e s ,  Task I1 Structural  Response and Task  111 Hydroelastic 
Response Analysis. 

Under Task  I - Computing program to extend flexible sphere  using the 
Analytical formulation Spencer and Shiffman approach has  been developed. 

by Dr. Li using nonlinear hydrodynamic theory on s t ruc tura l  portion i s  
formulated.  In o rde r  to cover a wide range of impact  conditions, future 
extensions a r e  necessary  in  the following i tems: 

a. Using l inear  hydrodynamic theory to include horizontal  velocity 
and rotation. 

b. Nonlinear hydrodynamic theory to develop computing program on 
spherical  portion and to develop nonlinear theory on toroidal and 
conic sections. 

Under Task  I1 - Computing program and U s e r ' s  Manual were  developed 
for  nonsymmetrical  loading on unsymmetrical  e las t ic  shells.  
develop the theory and methods to  cover real is t ic  Apollo configuration the 
followinq extensions a r e  recommended: 

To fully 

a. Modes of vibration and modal analysis.  

b. Extension to nonsymmetric shor t  t ime impulses .  



c. Linear buckling and elasto-plastic analysis 

These technical extensions will not only be useful for  Apollo and 
future  Apollo growth configurations, but they will a l so  be of value to other 
aeronautical  and spacecraft  p rograms,  

The hydroelastic response of the flexible shel l  is  obtained by the 
numerical  solution of the combined hydrodynamic and shel l  equations. 
resu l t s  obtained herein a r e  compared numerically with those derived by 
neglecting the interaction and applying rigid body p r e s s u r e s  to the same  
elast ic  shell. 
impact of the particular shell studied, the interaction between the shell  and 
the fluid produces appreciable differences in the overal l  acceleration of the 
center  of gravity of the shell, and in the distribution of the p r e s s u r e s  and 
responses.  However the maximum responses a r e  within 15% of those pro-  
duced when the interaction between the fluid and the shel l  is neglected. A 
br ie f  summary  of resul ts  i s  shown in the abs t rac ts  of individual volumes. 

The 

The numerical  resul ts  show that for an axially symmetr ic  

The volume number and authors a r e  listed on the following page. 

The contractor 's  designation for this report  i s  SID 67-498. 
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PRECEDING PAGE BLANK NOT FIU'IE3. 

A B S  T RA C T 

In this volume, the pressures ,  vehicle accelerations,  
and vehicle velocities which have been obtained in  the 

compared with full-scale and quar te r -  scale  experimental 
resul ts .  In addition, empirical  expressions in the form 
of polynomials a r e  derived by a leas t  squares  fit of the 
full-scale p r e s s u r e  profiles. 
full-scale tes t  resul ts  i t  is observed that low-pitch angles 
give higher accelerations,  whereas high-pitch angles give 
lower accelerations.  
is a l so  seen to resul t  in lower accelerations.  
that a combination of high pitch angle and high horizontal 
velocity produces a wedge-like impact,  where the impact 
takes place on the toroidal portion of the heat shield. 

. theoretical  analyses described in Volumes 2 and 3 a r e  

In comparison with the 

The effect of high horizontal velocity 
I t  may be 
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INTRODUCTION 

An extensive program of Water Impact Tes ts  of the Apollo Command 
Ful l -scale  Module has  been ca r r i ed  out in support of the Apollo Program.  

and l / l @ - a c a l e  testing was conducted by North American Aviation, Inc. , 
Space and Information Systems Division, and 1/4-scale  tes t s  were conducted 
by NASA at their  Langley Research Center. Analysis of the data f rom the 
above t e s t s  has been ca r r i ed  out by the Space and Information Systems Divi- 
sion of North American Aviation, Inc . ,  and has  yielded experimental values 
of p r e s s u r e  and acceleration versus  location, t ime,  wetted radius,  and other 
parameters .  
various scaled t e s t s  and correlation of loads,  determined f rom acceleration 
data,  and the p re s su re  data. 
several  North American Aviation, Inc. ,  internal le t te rs  and were presented 
to  the NASA in a s e r i e s  of briefings. 

This analysis showed agreement between the data f rom the 

The results of these tes t s  a r e  reported in 

This Volumeis divided into two par t s .  The f i r s t  discusses the f u l l  
scale  experiments and comparisons with the theoretical  studies of Volumes 
2 and 3 .  
ical  resul ts  and the 1/4-scale tes t s  conducted at  the NASA Langley Research 
Center.  

The second par t  i s  concerned with the comparison of the theoret-  
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F U L L  SCALE TESTS 

Among the numerous full scale water impact tes t s  conducted at  North 
American Aviation, Inc. , there  were many in  which the Apollo Command 
Module impacted upon the water with small  pitch angle ( so  that the point of 
impact w a s  situated on the heat shield), and with a ve ry  low horizontal 
velocity. The vertical  and horizontal velocities and the pitch angles of these 
t e s t s  a r e  shown in Table 1. In each t e s t ,  accelerations and velocities of the 
vehicle were measured and the pressures  were recorded at  cer ta in  points on 
the heat shield. 

Vehicle Ac c ele ration 

The acceleration of the vehicle center of gravity was measured during 
all drop t e s t s .  
i t s  t ime of occurrence.  
in F igures  la  and lb.  
number,  and the pitch angle at  which the vehicle impacted. In Figure l b  we 
show by the shaded a r e a s  the trend produced by the difference in pitch angle 
during each drop. 
ations,  whereas high pitch angles give lower accelerations.  The effect of 
high horizontal velocity i s  a l so  seen to resul t  in lower accelerations.  
be that a combination of high pitch angle and high horizontal velocity pro-  
duces a wedge-like impact,  where the impact takes  place on the toroidal 
portion of the heat shield. 

In Table I we show the recorded maximum acceleration and 
The individual points fo r  most  drop tes t s  a r e  plotted 

In Figure la ,  we show the corresponding drop 

It is observed that low pitch angles give higher acce le r -  

It may 

The solid curve represents  the maximum acceleration predicted by 
the rigid-body theoryof Volume 2 ,  where no interaction i s  included. 
observe that these resul ts  a r e  consistently lower than the experimental 
resu l t s ,  except fo r  those where the impact may have been wedge-like. 

We 

We have a l so  plotted the point of maximum acceleration predicted by 
the hydroelastic interaction theory of Volume 3 .  This point falls  direct ly  
on the main t rend of measured accelerations when the pitch angle is zero.  
This indicates that the interaction between the fluid and the s t ruc ture  is 
important in determining the acceleration of the center of gravity. 

The t ime of occurrence of the maximum acceleration of the center  of 
gravity i s  shown in  Figure 2 for  various ver t ical  impact velocities. Here, the 
experimental  resul ts  a r e  ra ther  widely scat tered.  
predicts  t imes which a r e  somewhat l e s s  than the recorded t imes ,  while the 
hydroelastic interaction theory predicts a t ime even shor te r  than this .  

The rigid-body theory 

It is 
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possible that while the maximum accelerations could be easily read off the 
raw data recordings, the t imes  at which they occur a r e  m o r e  difficult to  
obtain and a r e  more subject to  an e r r o r  of a few mill iseconds.  

Vehicle Velocity 

During the f u l l  scale t e s t s ,  full  camera  coverage enabled the velocity 
of the vehicle t o  be monitored during the impact.  
velocities of the vehicle after impact fo r  many of the drop t e s t s .  
marking the t ime of the maximum acceleration is a l so  shown. 
shows the corresponding theoretical  resul ts .  Here ,  i t  appears that the 
maximum acceleration occurs  much sooner than in  the experimental  resul ts ,  
although the general shape of the velocity curves is not much different. The 
discrepancy in the t ime of occurrence of the maximum acceleration i s  a t t r ib -  
uted to  the fact that i s  is very  difficult to measure the prec ise  t ime at  which 
the maximum occurs.  

In F igure  3 i s  shown the 
A line of 

Figure 4 

Pr e s s u r e  Di st ributions 

During the water impact tes t s  conducted on the full scale Apollo Com- 
mand Module, various measurements  of the p re s su res  due to  the impact 
were  taken among these t e s t s ,  there  were many in which the Apollo command 
module impacted upon the water with small  pitch angle ( so  that the point of 
impact was situated on the heat shield) and with a ve ry  low horizontal veloc- 
ity. The vertical  and horizontal velocities and the pitch angle of these t e s t s  
a r e  shown in Table 1. 
heat shield were  recorded. 

In each tes t ,  the p re s su res  at cer ta in  points on the 

A typical p ressure  distribution P on the heat shield at  any par t icular  
instant of t ime t is shown in Figure 5. 
impact velocity Vo, t i m e t ,  and radius r f rom the impact point. 
the p re s su re  distribution i s  axially symmetr ic  with respect  to the impact 
point. 
i s  minimum at the point of impact.  
when the horizontal velocity i s  zero.  
H i s  present ,  the profile is slightly skewed, a s  shown in Figure 6.  
the maximum pressures  occur near  the f r e e  water surface at the front of the 
capsule. 
velocit ies,  these tes t s  indicated that the horizontal velocity component has  
l i t t le e f fec t  on the overall  p r e s s u r e  distribution. 
ponent was the parameter  of p r imary  importance.  Fu r the rmore ,  ra ther  
la rge  sca t te r  was observed in all p re s su re  readings. Consequently, only 
those drops with small horizontal velocity will be considered in this report .  

The distribution i s  a function of 
In Figure 5 ,  

The pressure  i s  a maximum at or  near the f r e e  water  sur face ,  and 
The p r e s s u r e  i s  axially symmetr ic  only 

When a horizontal velocity component 
Here ,  

Although some drop t e s t s  were concerned with la rge  horizontal 

The ver t ical  velocity com- 

In F igures  7 through 14 a r e  given the observed p r e s s u r e  readings f o r  
the drop t e s t s  83 through 90 .  They a r e  obtained f r o m  References 7 and 8 .  

- 4 -  



In this  section, we shall use some of these measurements  t o  derive an 
empir ical  expression fo r  the pressure  profiles.  Fu r the rmore ,  a compar-  
ison of some of the experimentally observed quantities will be made with the 
theoretically derived resul ts  of the preceding Sections of this  report .  

The most  reliable p re s su re  readings appear to  be those recording the 
maximum pres su re  near  the edge of the wetted surface.  
maxima by pm. By using the results of the full scale drop t e s t s  described 
in References 1 to  11, we can derive, by means of a leas t  squares  surface 
f i t  of the experimental data,  an  expression for  Pm as a function of initial 
impact velocity Vo and t ime t. Thus, we f i t  a fifth degree polynomial surface 
of the type 

W e  denote these 

1 Pm ( t , V o )  - 
2 2 t a5 TVo + a 6 V o  

10 
= a l  t a2T t a3Vo t a4 T 

ta21 v 5  0 

where 
T = 1000 t 

The resul t  of this least  squares  f i t  i s  shown in F igures  15 through 21. In 
F igure  15, some typical curves  of pm a s  a function of t ime a r e  shown fo r  
var ious initial impact velocities. In addition, the polynomial coefficent s 
a l ,  a2,  . . . , a21 a r e  exhibited. Figures 4 through 9 show in detail pm 
(t) for  each pertinent initial velocity Vo, a s  well as the corresponding 
experimental  points. 

A slight modification in the polynomial was then made so that the 
curves  would not overlap,  a s  they do in  Figure 15. 
polynomial surface i s  shown in  Figure 22,  together with the polynomial 
coefficients a l ,  a2 ,  . . . , a2 1. The detailed resul ts  a r e  given in Figures  
23 through 28, together with the original data points. 

The result  of the new 

A second quantity which could be easily obtained f rom the experimental 
data was the radial  distance f r o m  the impact at which the maximum pres su re  
pm occurs .  We have already observed, f rom the foregoing theoretical  work 
of Volumes 2 and 3 of this  report ,  that the p r e s s u r e s  a r e  maximum at or near  
the edge of the wetted sur face .  Thus the radial distance at which pm occurs  
can be directly compared with this theoretical measurement .  Let us  devote 
the radius by rm. By fitting a fifth degree polynomial surface of the type 
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(t,  Vo) = b l  = b2T +t b3V0 t b4T 2 t b5TVo t b6V0Z t . . . . . . t b21V05 
rm 

where (2 )  

T = 1000 t ,  

we obtain the curves of Figure 29.  There  the coefficients b l ,  b2 ,  . . . , b Z l  
a r e  a l so  shown. 
f r o m  the polynomial a re  compared with the original data points obtained 
f r o m  the scale  tes ts .  

In F igures  30 through 34 the  detailed resu l t s  obtained 

A slight modification of the polynomial surface renders  l ines  which do 

The detailed curves and the i r  comparison with the original data 
not overlap a s  they do in  Figure 2 9 .  
F igure  3 5 .  
points a r e  shown in F igures  3 6  through 41. 

This polynomial i s  i l lustrated in  

F o r  comparison with theoretical resu l t s ,  we i l lus t ra te  i n  F igure  42 
the radial  distance obtained f r o m  the rigid-body theory ( n o  interaction) of 
Volume 2 .  It is observed that the p r e s s u r e  pulse does not t rave l  as  rapidly 
a c r o s s  the shel l  as  the experimental  resu l t s  indicate.  This  disagreement 
can be explained on the bas i s  that the theoret ical  resu l t s  a r e  obtained f r o m  
a l inear ized theory which neglects the effect of the splash.  This splash may 
have the effect of causing the p re s su re  t ransducers  to  r eg i s t e r  at an e a r l i e r  
time than the theoretical  resu l t s  would predict .  

In F igure  43, we have combined the resu l t s  of F igures  2 2  and 35. 
this  Figure can be derived pm and Vm at any t i m e ,  given the init ial  impact 
velocity.  

F r o m  

An empirical  expression f o r  the p re s su re  profile at any instant of t ime 
m a y  be derived by using the polynomial expressions pM ( t ,  Vo) and rM(t ,  V o ) ,  
together with the est imates  of vehicle acceleration, A ,  derived on the bas i s  
of rigid-body entry in  a previous section. 

At instants of t ime immediately a f te r  the impact ,  the profile will be 
Let u s  a s sume  a parabolic variation of p along as i l lustrated in  Figure 5. 

the radius r .  

Thus 
2 p = po t b r  t c r  

( 3 )  

where p, is the unknown stagnation p r e s s u r e  at the impact point. But since 

dp 
d r  

0 at r = 0 because of symmetry  a r e  p = pM at rM,  we f i n d  t h a t  

P m  - PO 2 
r 

rM2 P = P o +  

- 0 -  



the total  upward force F on the vehicle due to  this  p re s su re  i s  
(4) 

But 
W 
a 

F = - A  

and s o  

After a cer ta in  t ime has elapsed, it will be found that po < 0. Of 
course a p re s su re  l e s s  than zero  i s  not possible if  we a s sume  that no cavi- 
tation occurs .  F o r  p re s su res  subsequent to  that t ime ,  a new est imate  can 
be made by assuming that 

n 

where n is an  exponent t o  be determined. 

Then, because 

rm WA 
F =  I, 2 rpm(&- d r  =- g 

we find that 

( 9 )  

and 

p = P m (q rm 

where A i s  once again determined from either the experimental  resu l t s  o r  
f rom the theoretical  rigid-body calculations. 
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By using the values of the acceleration fo r  a rigid body of radius 
14. 85 f t .  and having an initial impact velocity of 30 fps ,  we can generate ,  
f rom Equations ( l ) ,  ( 2 ) ,  (4),  ( 7 ) ,  and ( l l ) ,  the p r e s s u r e  profiles shown in  
Figure 44. The overall profile is  representative of what is  observed exper-  
imentally, and could itself be used as a forcing function fo r  the purpose of a 
dynamic analysis of a flexible body during impact.  
t r a t ed  the theoretical p re s su re  profiles f rom a rigid body of the same s ize  
and having the same initial velocity. It i s  seen that the agreement between 
the two derivations i s  fa i r ly  good. The main shortcoming of the l inear ized 
theory seems to  be that it predicts  infinite peak p r e s s u r e s ,  and also that 
the speed of propagation of the p re s su re  pulse is somewhat slower than 
actually observed. 

In Figure 45 is  i l lus-  

These points will be discussed in detail l a t e r  on. 
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QUARTER SCALE TESTS 

At the NASA Langley Research Center,  a se r i e s  of t e s t s  have been 
conducted covering the ver t ical  axially symmetr ic  impact of a rigid 1 /4-  
scale  model of the Apollo Command Module. Additional t e s t s  have recently 
been per formed with a 1/4-scale  model having a flexible heat shield. 

Vehicle Ac c e l  e rations 

F igure  46 shows the measured accelerations of accelerations of the  
center  of gravity of the Langley 1/4-scale  rigid model. 
165 pounds and had a radius of 44. 1 inches. 
between 5.95g and 6. 55 g,  occurring between 0. 006 seconds and 0.007 
seconds. 
i s  shown in  Figure 47. 
at  0 .  0075 seconds a f t e r  the impact. 
r e  s ult s . 

The model weighed 
The maximum acceleration i s  

The corresponding analytical prediction based on rigid-body theory 
Here the maximum acceleration i s  4 .4g  and it occurs  

There i s  a 257'0 to  337'0 difference in the  

P r e s s u r e  Distributions I 
Figures  48 and 50 show the experimentally observed p r e s s u r e  profiles 

and 15. 3 fps ,  respectively. acting on a rigid body during impact at 7. 62 fps 
The corresponding theoretical  rigid-body resul ts  a r e  shown in F igures  49 
and 51. 

Although direct  comparison is difficult, we observe that the general  
shape of the profiles i s  the same in  each case .  However, it appears  that the 
p r e s s u r e s  propagate m o r e  rapidly than predicted by the theory.  This may be 
explained by the effect of the spray root and displaced water ,  which was neg- 
lected in the analysis. 
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CONCLUSIONS 

Both the full scale and quar te r  scale experimental resul ts  show that the 

This can be explained by the effect of the nonlinear f r ee  surface,  
rigid-body theory predicts  that  the p re s su re  wave propagates a l i t t le too 
slowly. 
which tends to  produce p res su res  on the shell  in advance of those predicted 
on the bas i s  of a planar f r e e  surface.  

The accelerations of the center of gravity predicted by the rigid-body 
theory a r e ,  in general ,  smal le r  than actually measured.  However, the 
hydroelastic theory does predict higher accelerations which fall within the 
main t r end  of the full scale t e s t s .  

The theoretically obtained pressures ,  a r e ,  in general ,  within 2 5  
percent of those observed experimentally. 
between theory and experiment in many a r e a s .  Below, we offer a number 
of comments a s  t o  the possible sources of any discrepancies that do exist .  

Substantial agreement exists 

Departures  F r o m  Reality In The Theory 

1. Since the splash has been neglected, and the f r e e  surface has  been 
l inearized, the p re s su re  peaks may be  in same  e r r o r .  In addition, 
because of the assumption of the planar f r e e  surface,  the theore t -  
ical  p r e s s u r e  wave does not propagate a s  rapidly a s  that observed 
in experiments.  

The effects of compressibility may still play a par t  in the phenom- 
enon at the edges of the wetted surface.  

2 .  

~ 

Possible Sources of Experimental  E r r o r  

1. The diameter  of the pressure  t ransducers  appear to be roughly 
the same s ize  a s  the character is t ic  length of the p re s su re  peaks 

near  the wetted edge. 
not measu re  the t rue  peaks,  but instead will measu re  an  average 
p res su re .  

This may mean that the t ransducers  will 

2. There  may be some slight hydroelastic effect acting on the t r a n s -  
duc e r s them s elve s . 

- 11 - 



SUMMARY AND RECOMMENDATIONS 

A considerable number of water impact t e s t s  have been ca r r i ed  out on 
both full-scale and 1 /  10-scale models at the Space and Information Systems 
Division of North American Aviation. Tes ts  have a l so  been conducted at the 
Southwest Research Institute, l 2  San Antonio, Texas,  and at NASA Langley. 
The data used in this report  was taken exclusively f r o m  the resu l t s  of the 
NAA ful l -scale  drop tes t s .  
the existing data f rom all other sources.  
fully documented, it i s  felt that an analysis of the raw data tapes  in  existence 
would be beneficial. 
detailed inspection of the existing raw data,  i t  is  determined that more  data 
i s  necessary  to  f i l l  in any experimental gaps. 

It i s  recommended that fur ther  study be made of 
Although all the data has  not been 

Further  impact tes t s  could be ca r r i ed  out i f ,  a f ter  a 

In this  section of the report  empirical expressions have been deter-  
mined f rom tes t  data for  the pressure  distribution on the Apollo heat shield 
during a vertical  water impact.  In addition, comparisons have been made 
between the desired theories and the experimental observations of the full 
scale and quarter  scale tes t s .  
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Figure 6 .  Typical Pressure Profiles for a Slanting Impact a t  Times t l  , t2 .  
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Figure 49. Pressure P r o f i l e s  Predicted from Rigid-Body Theory, V,=7.62 fps.  
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Figure 50. Q u a r t e r  Scale Experimental Pressure P r o f i l e s ,  V o  = 15.3 fps. 
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Figure 51. Pressure P r o f i l e s  Predicted from Rigid-Body Theory, V0=15.3 f p s .  
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